Perceptions of wetlands: why so negative?

I’ve been working on the animals and plants that live in urban ponds for a few years (you can find some of my work on my Kudos page here, here, and here), and I have a Google Alert running for mentions of “pond” or “wetland” in the media. However, far from lots of stories about fish, ducks, and dragonflies, all I see is this:

Screen Shot 2016-01-23 at 23.04.33

Read More »

Advertisements

My run of luck

It is easy to look back and see those little (and sometimes not so little) moments that have caused great changes in your life. Being in academia (and having survived this far) means that I have been immensely lucky. There is no other way to describe it. Some of that luck has been self-made, or at least I have seen and taken opportunities when they presented themselves. However, there were a lot of cases where I benefitted from sheer serendipity. I thought it might be useful to highlight some of those:

  1. I was born this way – Straight off I need to acknowledge my privilege. I’m white and male (among other awesome things) and that gives me a massive headstart straight away.
  2. A casual conversation with a lecturer – After an ecology lecture in 2004 I approached my lecturer and asked about PhDs. In my mind, he asked “How do you feel about dragonflies?” although I have a feeling I have made that up. He wrote a PhD project up, I applied, and started working with him the next year.
  3. A transoceanic link – My PhD supervisor happened to have a former student working at a university in Canada. He put me in touch, we found a slightly unusual funding source, and I ended up moving over shortly after finishing my PhD.
  4. Helping out around the lab – As the senior postdoc in the lab in Canada, I chipped-in with supervision of MSc and PhD students. The upshot was that I was helping a student analyse and write-up her data. That analysis produced a Nature paper.
  5. Government policy on research assessment – Because I hadn’t held a faculty position before, if I joined a UK university and was a part of their Research Excellence Framework submission I would only have to submit one paper. The fact that I was looking for a faculty position just as our Nature paper came out made me very attractive as a new hire.
  6. Having a big mouth – Someone in the department realised that I never say “no” to anything. One day I was called into my Head of School’s office and shown an email from Random House publishers saying that the chair of a local event had pulled out and could they suggest someone to fill in. The event was an Evening With Richard Dawkins (of whom I am a massive fan) in front of a sell-out crowd at the West Yorkshire Playhouse. I said yes (inevitably), met Richard, we shared a couple of hours on stage, and I have been told that the evening went extremely well (it was hard to tell from under the spotlight!).

That’s not saying that I haven’t worked hard. I’ve done what most academics do, which is to sacrifice a degree of work-life balance until reaching a permanent position. I have published a LOT and the ideas that I have been nurturing for a number of years (urban pond research networks, projects on environmental education, pedagogical research, and dragonfly evolution) are coming to fruition. However, there were key points in my career when luck was a deciding factor. There are probably academics out there who had no luck and got to where they are purely on the basis of hard work. However, I imagine they are in the minority!

Who are “Adjacent Government”?

Having just given a talk on science communication and the merits of public engagement to a group of undergraduate students, I was delighted to receive a phone call out of the blue from someone asking me to write about my research for “Adjacent Government Main Document”. The gentleman who called (and who spoke with a delightfully posh English accent) assured me that it was read by 145,000 key decision makers, politicians, and research councils, with a >30% read rate on their email and 28,000 views of each email in the previous issue. I was informed that Miguel Cañete, the EU Commissioner for Climate Action, had specifically requested a piece to go opposite his editorial on climate, to highlight “climate change impacts nature’s mimicry system research”. That sounds a bit strange, I thought, but fine – the EU had just published a short piece on my work (which they fund) and so I figured this was some sort of follow-up. I was asked if I could provide 1,000 words by 10th January 2017 for inclusion in a later issue. I said “yes” – I can eat 1,000 words for breakfast! Then I was informed that this was wonderful and that all that was left was to negotiate the fee. There was discussion of fees in the £1000s, and possible discounts. A bargain!Read More »

Can you recognise individual dragonflies from their faces?

bug-189906_1920Dragonflies are beautiful, alien-looking animals. They have bits that move and bend in ways that you wouldn’t expect, enormous eyes, and intricately patterned wings. I have written about the hydraulic gill system of dragonfly larvae, which powers both their jet propulsion and their “mask” that grabs prey. Meanwhile, dragonfly adults have basket-like legs to ensnare prey, as well as flexible abdomens which they use to form mating “hearts”. I’ve been interested in why dragonflies look the way they do, and that that means for their evolution, for a number of years.

I was intrigued, therefore, to read a paper that described how a pair of scientists had been able to tell dragonflies apart just by looking at the markings on their bodies. I do not remember how I first came across it, but the work is described in this German paper published in 2009 in the journal Entomo Helvetica by Schneider and Wildermuth*. The paper described a population of the southern hawker (Aeshna cyanea) in which a substantial number of animals could be identified from their facial markings. The paper is not creative commons so I can’t share the document, but you can see for yourself if you download the manuscript from the public link above and look at Figure 2 (it’s worth it – the pictures are stunning!). The title of the paper translates as “Dragonflies as individuals: the example of Aeshna cyanea“. So why might these markings occur?

There are lots of reasons why it might be advantageous for animals to be able to identify individuals. You might be trying to identify mates of high quality to increase your chances of reproduction. Many social animals (including humans, but also ants, meerkats, and molerats) distinguish relatives from non-relatives or friend from foe using sight or smell. Many theories of how cooperation evolved rely on animals having repeated interactions with one another, and remembering who has scratched whose back so that the favour can be repaid in the future. However, none of this applies to dragonflies. Dragonflies rarely have any structure to their mating (it’s usually first-come-first-served, and a mad scramble if many males are involved), they are not social (while they live in groups they do not necessarily act together), and they do not cooperate (apart from mobbing of predators such as hawks, but that’s probably not true cooperation).

san_marco_spandrel
A spandrel Photo by Maria Schnitzmeier, CC-BY-SA, http://bit.ly/2czvygt

More likely what we are seeing is not the evolution of a trait, but the by-product of another trait. In a provocative article written in 1979, Stephen Jay Gould and Richard Lewontin wrote about this idea**: that some things we observe in nature are not the product of evolution directly, but occur as a result of some adaptation. Gould and Lewontin gave the example of “spandrels” from Rennaisance architecture. Spandrels (like the example on the right, from the Basilica de San Marco in Venice) were the accidental byproduct of the way that arches were designed – a small curved area was left in the corner of the arch, and this was often filled with artistic renderings. However, the spandrel itself was never the focus of the design.

In the case of dragonfly faces, the same is likely true. Dark patches on insects are usually caused by a substance called “melanin” (which is the same pigment that produces darker skin in humans). Melanin is involved when insects fight off infections or heal injuries. It is most likely that the patterns on the faces of the dragonflies are due to some kind of damage, perhaps during emergence from the water, or perhaps as a result of conflict between territorial individuals. What is most interesting, though, is that Schneider and Wildermuth seem to have found a population in Switzerland that has an unusually high number of animals with such markings. When I went to Flickr to look through other photographs of this species, I found very very few examples. Below is a gallery of some of the creative commons photos, and there are many more if you go to Flickr yourself and search for “aeshna cyanea”.

This slideshow requires JavaScript.

That’s not to say there are no other examples. See here and here for examples of the markings in other photographs (but note that many of the most striking examples are taken by the same photographer).

img_0224_2
Photo by Zak Mitchell.

The researchers who published the original paper offered an interesting addition to the literature on understanding individual insects. Usually, we do this by marking the animals (with dragonflies you can write on their wings, for instance, as you can see on the right) or more recently by attaching radio transmitters. There are some species that use natural markings to identify individual animals, including work on whales, dolphins, and killer whales. The technique is also used for some amphibians where the underside of the animals is often mottled in unique ways. However, given the fact that the markings are not always present, that we don’t know how long they last, and that the method requires some very specific (and challenging!) photography, it is unlikely that this particular method will be used widely in insect ecology. Instead, the study highlights an interesting example of unexplained variation in dragonflies, which deserves more study in its own right.

References

*Schneider, B. and Wildermuth, H. (2009) Libellen als Individuen – zum Beispiel Aeshna cyanea (Odonata: Aeshnidae), Entomo Helvetica, 2: 185-199.

*Gould, S.J. and Lewontin, R.C. (1979) The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme” Proc. Roy. Soc. London B, 205: 581–598

Community Collaborative Science (CoCoSci) as an alternative model for scientific collaboration?

G.Mannaerts, CC BY-SA 4.0, http://bit.ly/2dT3gK4
G.Mannaerts, CC BY-SA 4.0, http://bit.ly/2dT3gK4

I went to a fascinating talk by a colleague at Leeds, Dr Mark Davis, a few weeks ago. Mark works on Alternative Finance (“altfin”), which involves a shift in economic thinking away from traditional big banks (with low interest and risky investments) towards peer-to-peer and community-based lending. You can read more about Mark’s ideas in his recent Conversation article: “How alternative finance can offer a better banking future“. Mark had a lot of fascinating insights which (to a lay person like me) resonated strongly. The notion that banks are inherently risky and create the circumstances for economic collapse, and the idea that all of our money that we give to banks ends up going far away into large, complex economic systems, rather than helping closer to home. Mark also made the point that there is a parallel between the “Big Society” notion promoted by the UK Conservative Government under David Cameron, and the Alternative Finance concept that he promotes. Under the Big Society, it is assumed that everybody has a little bit of spare time here and there and that we can volunteer that time to solve social problems. This means lower investment from the government because we are (in theory) capable of taking over from public services. Some people are skeptical… Altfin, on the other hand, takes the same approach to capital: almost everybody has a small amount of capital sitting around that is doing nothing productive, and if we pool our spare capital then we can do good things with it. This got me wondering whether the same thing was true for research…

Read More »

Imposter syndrome and a note of thanks

A few weeks ago, I was honoured to have been given the Early Career Entomologist Award from the Royal Entomological Society and the Marsh Christian Trust. I’m not good at accepting praise and have always suffered from imposter syndrome. In the last year, I have done some relatively high profile events that have led to me speaking in front of hundreds of people. However, the thought of receiving an award in front of a few dozen of my peers terrified me. It is easy to sit in a lab or office all day, receiving scathing reviews of papers and grants (which are just par for the course, of course) and think that someone must have made a mistake when you finally achieve some degree of success.Read More »