Can you recognise individual dragonflies from their faces?

bug-189906_1920Dragonflies are beautiful, alien-looking animals. They have bits that move and bend in ways that you wouldn’t expect, enormous eyes, and intricately patterned wings. I have written about the hydraulic gill system of dragonfly larvae, which powers both their jet propulsion and their “mask” that grabs prey. Meanwhile, dragonfly adults have basket-like legs to ensnare prey, as well as flexible abdomens which they use to form mating “hearts”. I’ve been interested in why dragonflies look the way they do, and that that means for their evolution, for a number of years.

I was intrigued, therefore, to read a paper that described how a pair of scientists had been able to tell dragonflies apart just by looking at the markings on their bodies. I do not remember how I first came across it, but the work is described in this German paper published in 2009 in the journal Entomo Helvetica by Schneider and Wildermuth*. The paper described a population of the southern hawker (Aeshna cyanea) in which a substantial number of animals could be identified from their facial markings. The paper is not creative commons so I can’t share the document, but you can see for yourself if you download the manuscript from the public link above and look at Figure 2 (it’s worth it – the pictures are stunning!). The title of the paper translates as “Dragonflies as individuals: the example of Aeshna cyanea“. So why might these markings occur?

There are lots of reasons why it might be advantageous for animals to be able to identify individuals. You might be trying to identify mates of high quality to increase your chances of reproduction. Many social animals (including humans, but also ants, meerkats, and molerats) distinguish relatives from non-relatives or friend from foe using sight or smell. Many theories of how cooperation evolved rely on animals having repeated interactions with one another, and remembering who has scratched whose back so that the favour can be repaid in the future. However, none of this applies to dragonflies. Dragonflies rarely have any structure to their mating (it’s usually first-come-first-served, and a mad scramble if many males are involved), they are not social (while they live in groups they do not necessarily act together), and they do not cooperate (apart from mobbing of predators such as hawks, but that’s probably not true cooperation).

san_marco_spandrel
A spandrel Photo by Maria Schnitzmeier, CC-BY-SA, http://bit.ly/2czvygt

More likely what we are seeing is not the evolution of a trait, but the by-product of another trait. In a provocative article written in 1979, Stephen Jay Gould and Richard Lewontin wrote about this idea**: that some things we observe in nature are not the product of evolution directly, but occur as a result of some adaptation. Gould and Lewontin gave the example of “spandrels” from Rennaisance architecture. Spandrels (like the example on the right, from the Basilica de San Marco in Venice) were the accidental byproduct of the way that arches were designed – a small curved area was left in the corner of the arch, and this was often filled with artistic renderings. However, the spandrel itself was never the focus of the design.

In the case of dragonfly faces, the same is likely true. Dark patches on insects are usually caused by a substance called “melanin” (which is the same pigment that produces darker skin in humans). Melanin is involved when insects fight off infections or heal injuries. It is most likely that the patterns on the faces of the dragonflies are due to some kind of damage, perhaps during emergence from the water, or perhaps as a result of conflict between territorial individuals. What is most interesting, though, is that Schneider and Wildermuth seem to have found a population in Switzerland that has an unusually high number of animals with such markings. When I went to Flickr to look through other photographs of this species, I found very very few examples. Below is a gallery of some of the creative commons photos, and there are many more if you go to Flickr yourself and search for “aeshna cyanea”.

This slideshow requires JavaScript.

That’s not to say there are no other examples. See here and here for examples of the markings in other photographs (but note that many of the most striking examples are taken by the same photographer).

img_0224_2
Photo by Zak Mitchell.

The researchers who published the original paper offered an interesting addition to the literature on understanding individual insects. Usually, we do this by marking the animals (with dragonflies you can write on their wings, for instance, as you can see on the right) or more recently by attaching radio transmitters. There are some species that use natural markings to identify individual animals, including work on whales, dolphins, and killer whales. The technique is also used for some amphibians where the underside of the animals is often mottled in unique ways. However, given the fact that the markings are not always present, that we don’t know how long they last, and that the method requires some very specific (and challenging!) photography, it is unlikely that this particular method will be used widely in insect ecology. Instead, the study highlights an interesting example of unexplained variation in dragonflies, which deserves more study in its own right.

References

*Schneider, B. and Wildermuth, H. (2009) Libellen als Individuen – zum Beispiel Aeshna cyanea (Odonata: Aeshnidae), Entomo Helvetica, 2: 185-199.

*Gould, S.J. and Lewontin, R.C. (1979) The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme” Proc. Roy. Soc. London B, 205: 581–598

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s