An example of progressive peer-review in a scientific journal

Almost all scientific papers are peer-reviewed.  This means (typically) that between one and three researchers from the same field as the paper’s topic offer (sometimes constructive) criticism and a judgement as to whether or not the paper merits publication.  There is a strange ritual to it, whereby the authors submit, the reviewers critique, then the authors rebut or acquiesce to the reviewers’ demands, while the editor acts as ringmaster and makes the final decision.  The main problems are that (i) there is a lack of dialogue (you only get a very small number of opportunities to engage), and (ii) your manuscript is in the hands of a very small number of reviewers with their own particular foibles and hobby horses.

A solution to this is to have either (i) open pre-publication peer-review, or (ii) open post-publication peer-review.  This means that the paper is discussed by more people and in a medium which encourages dialogue, such as a blog comments section.  Even better, each element of the dialogue can feature as a subsection of the paper itself, making each section citable in its own right.  This encourages reviewers and commenters alike to produce high-quality criticisms and has been implemented in some journals. Here’s an example of the process in action in a particularly controversial climate paper at Atmospheric Chemistry and Physics:

Screen Shot 2018-08-10 at 13.44.05

This is certainly the way forward for open science.

Advertisement

One quick trick to increase visibility and citations of research papers

digitization-of-library-3068971_640Since I’m “young” (whatever that means) I sometimes get asked to advise on how to disseminate research outputs through new-fangled doohickies like “the social media” (like writing click-baity headlines). This came up in a School Management Group meeting today, in the context of trying to increase visibility and citation rates for papers published by our faculty. It was something that I was quite interested in, so I spent about an hour doing some quick literature searches and then implementing some of what I found. Here’s the gist:Read More »

A hat-full of academic how-tos

Dipping in and out of the stream of tweets, there are always fascinating links to excellent resources for academics at all stages of their careers. I just spotted another, and thought it might be about time to aggregate some of these for posterity. Here’s the quick list (to which I will add if people suggest links), and details are below

  1. “How to find a postdoc”
  2. “How to get started with R”
  3. “How to use Github and RStudio”
  4. “How to use Github effectively”
  5. “How to respond to reviewers’ comments”
  6. “How to write a literature review”
  7. “How to help fight sexism in academia”
  8. “How to make your publications more accessible”
  9. “How to make your work reproducible”

Read More »

Making my research more open using Kudos

I’ve always tried to make sure that my academic work wasn’t tucked away on a dusty shelf (or paywalled in an obscure academic journal, which is the equivalent in the digital age) and that has meant that my digital footprint is huge. I have accounts on ResearchGateTwitterSlideshareLinkedInFigshareGoogle ScholarAcademia.eduFlickr, and Google+ (as well as probably a few more that I’ve forgotten!). I don’t think I have lost anything by “scattering my wild oats” across a huge swathe of the internet, because I assume that it increases visibility. Indeed I get a few views across all platforms:

However, what I have been looking for is a service that allows me to aggregate all this content. Ideally it would have (i) a single page per publication, where I could bring together all the bits of information relating to that paper (data, preprints, press coverage, and a lay summary), and (ii) a personal profile page that brings all of those publication pages together under my profile. Well, I think I’ve found it!Read More »

Why has the blog been so busy recently…?

typewriter-407695_1280For the two or three people who actually pay any attention to what I get up to here, you might have noticed a bit of a theme over the past couple of months: large numbers of posts (an anomaly in itself!) summarising some of my papers. I set myself the task of writing these lay summaries to try to make my work a little bit more accessible to people who might be interested in the topic but who might not have access to the paper, have the technical skills needed to interpret the findings, or who simply don’t have time to go and read a 7,000 word scientific article.

I’m pleased to say that I am (nearly) up to date now, and you can see the fruit of my labour here or click the green links labelled “lay summary” next to each of my papers on my publications page. There are 30 summaries in total, with a couple missing for the most recent papers. Trying to make research more open and accessible is a personal passion, and so I’d love to hear what you thought of this. Is it useful? Is anything still unclear? Drop a note in the comments and let me know.

How big is a damselfly, and why?

Calopteryx_maculata_mating_(crop)Background: Body size is among the most important characteristics of animals and plants. Larger animals are capable of buffering against their environment (think big polar bear vs tiny chihuahua in the snow!) so that they can survive in a wider range of locations, are capable of eating a wider range of prey, and consume more prey than smaller animals leading to a stronger impact on ecosystems. However, we are still trying to understand the factors that influence body size, both ecologically and evolutionarily.

What I did: A number of previous studies have compared body size in particular animals across different locations to see whether or not there are consistent patterns in that variability. I wanted to collect specimens of a single species (the ebony jewelwing damselfly, Calopteryx maculata) for analysis from across its entire range in North America, but the range is so large (Florida to Ontario, and New York to Nebraska) that I wouldn’t have been able to travel to sufficient sites within the one season that I have available.  Instead, I asked a lot of local dragonfly enthusiasts to catch and send me specimens from their local sites. I am extremely grateful to all of them for helping, as this could not have been done without their kind volunteering of time and energy.  I ended up with a substantial dataset of animals from 49 sites across the range.  I showed that there was a general increase in size further north, but that this was not a simple increase. Instead, there was a U-shaped relationship between latitude and size with larger animals in the south and the north with an intermediate size in the middle. When I looked at the drivers of this trend, it appeared that warm temperatures resulted in higher body sizes in the south. In the north, the animals use shortening days as a signal to accelerate their development and so in the most northern regions animals were developing very quickly despite the cold.

Importance: Large scale (across the whole of an animal’s range) measurements of body size are essential to provide an ecologically relevant test of explanations for changing body size. These findings support previous laboratory work which suggested a twinned role for temperature and photoperiod in driving development in damselflies.

This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “Time stress and temperature explain continental variation in damselfly body size”, was published in the journal Ecography in 2013. You can find this paper at the publisher’s website or for free at Figshare.

Image credit: Kevin Payravi, http://bit.ly/1q7B2Ph, CC BY-SA 3.0

More toxic frogs live longer, but more venomous snakes do not

frog-284044_1280Background: It is thought that all animals age: they show an increased probability of death at greater ages. However, the lifespans of many animals vary widely. What is it that determines whether or not an animal lives for one year or one hundred years? One of the key drivers is thought to be how likely you are to be killed by something else. Those animals that that are unlikely to be eaten, whether that is because they are very large (elephants), well armoured (tortoises) or poisonous (poison dart frogs), tend to evolve lower rates of ageing. After all, if you are going to live for a long time anyway, you might as well make the most of it. On the other hand, if you live precariously from day to day then there isn’t much point in investing later in life because you probably won’t get that far.

What we did: We compared lifespans of amphibians and snakes that either had a chemical defense (in amphibians) or venom (in snakes) with those that did not have those traits. We showed that (accounting for their evolutionary history) poisonous amphibians had a significantly longer lifespan than non-poisonous amphibians, but there was no difference in venomous and non-venomous snakes.

Importance: This study has two major implications. The first is that it is vital to incorporate evolutionary history into these sorts of analyses. We had built our study on the findings of an earlier piece of work (which did not account for evolutionary history) that suggested that the snakes also showed a longer lifespan when they were venomous, but our results refute that earlier finding. Second, our findings offer yet more evidence for an offensive role for the origins of snake venom, which has been suggested in other recent studies.

This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “Species with a chemical defense, but not chemical offense, live longer”, was published in the Journal of Evolutionary Biology in 2013. You can find this paper at the publisher or for free at Figshare.

Image credit: Ephraimstochter, http://bit.ly/1xHxpks, Public Domain.

One simple way to increase visibility of your scientific publications

Background: As well as publishing in ecology and evolutionary biology, I am also interested in how that publishing industry works. There is a clear need to disseminate information as widely as possible in order to accelerate the rate of testing of new theories and discovery of new information. However, some publishing models (and some publishing companies) hide scientific research away so that most people do not have access to that work. Self-archiving is a way for researchers to make available certain forms of their research without breaking copyright (which is almost always handed over to the publishers).

What I did: I reviewed some of the literature on the benefits of self-archiving, in terms of the access to the general public and what has become known as the “open access advantage”: papers that are more openly available are cited more. I also show that over half of all ecology and evolution papers could have been archived in a format that was almost identical to their final, finished format without breaking copyright. I then highlight key methods that researchers can use to self-archive their work: publishing through institutional repositories, third party websites, or self-creation of online portfolios using online tools.

Importance: Self-archiving has the potential to open up research (often funded by taxpayers) to a far wider audience, and this is an important step towards making research more accessible to the general public.

This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled ““Going green”: self-archiving as a means for dissemination of research output in ecology and evolution”, was published in the journal Ideas in Ecology and Evolution in 2013. You can find this paper for free at the publisher.

The psychology of animal camouflage

DisruptiveColourationBackground: There are a number of ways in which animals and plants attempt to defend themselves from predators. Sometimes they look or sound like something that they are not, such as another animal or plant that is venomous, in a process known as “mimicry”. Other times, rather than attempting to deceive a predator after being seen, the animal or plant might try to hide altogether. This second defensive strategy, known as “camouflage”, can take a number of forms. One of the most interesting forms of camouflage is “disruptive colouration” which involves breaking up the edge of an animal to make it harder to detect.

What we did: Rich Webster is a PhD student at Carleton University who applied a novel approach to the question of how disruptive colouration helps to hide animals. He used eye-tracking technology with humans as predators searching for digital moths on pictures of trees. With this approach he was able to see where people were looking and how long it really took them to find the “moth”. Importantly, he could also tell how many times they looked at the moth without actually seeing it. We were able to show that the length of time taken to find a target and the number of times that the target was missed were both significantly higher when the moth had a larger number of patches on the edge of its wings.

Importance: Mottled colouration has been observed in many species, but until now we have not had a clear description of the mechanism by which this form of defensive colouration acts. Our results provide that first insight into how and why predators sometimes fail to find prey which are camouflaged in this way.

This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “Disruptive camouflage impairs object recognition”, was published in the journal Biology Letters in 2013. You can find this paper at the publisher or archived at Figshare.

Image credit: All images are by Rich Webster, and used with permission.