Almost all scientific papers are peer-reviewed. This means (typically) that between one and three researchers from the same field as the paper’s topic offer (sometimes constructive) criticism and a judgement as to whether or not the paper merits publication. There is a strange ritual to it, whereby the authors submit, the reviewers critique, then the authors rebut or acquiesce to the reviewers’ demands, while the editor acts as ringmaster and makes the final decision. The main problems are that (i) there is a lack of dialogue (you only get a very small number of opportunities to engage), and (ii) your manuscript is in the hands of a very small number of reviewers with their own particular foibles and hobby horses.
A solution to this is to have either (i) open pre-publication peer-review, or (ii) open post-publication peer-review. This means that the paper is discussed by more people and in a medium which encourages dialogue, such as a blog comments section. Even better, each element of the dialogue can feature as a subsection of the paper itself, making each section citable in its own right. This encourages reviewers and commenters alike to produce high-quality criticisms and has been implemented in some journals. Here’s an example of the process in action in a particularly controversial climate paper at Atmospheric Chemistry and Physics:

This is certainly the way forward for open science.
Since I’m “young” (whatever that means) I sometimes get asked to advise on how to disseminate research outputs through new-fangled doohickies like “the social media” (like writing click-baity headlines). This came up in a School Management Group meeting today, in the context of trying to increase visibility and citation rates for papers published by our faculty. It was something that I was quite interested in, so I spent about an hour doing some quick literature searches and then implementing some of what I found. Here’s the gist:
For the two or three people who actually pay any attention to what I get up to here, you might have noticed a bit of a theme over the past couple of months: large numbers of posts (an anomaly in itself!) summarising some of my papers. I set myself the task of writing these lay summaries to try to make my work a little bit more accessible to people who might be interested in the topic but who might not have access to the paper, have the technical skills needed to interpret the findings, or who simply don’t have time to go and read a 7,000 word scientific article.
Background: Body size is among the most important characteristics of animals and plants. Larger animals are capable of buffering against their environment (think big polar bear vs tiny chihuahua in the snow!) so that they can survive in a wider range of locations, are capable of eating a wider range of prey, and consume more prey than smaller animals leading to a stronger impact on ecosystems. However, we are still trying to understand the factors that influence body size, both ecologically and evolutionarily.
Background: It is thought that all animals age: they show an increased probability of death at greater ages. However, the lifespans of many animals vary widely. What is it that determines whether or not an animal lives for one year or one hundred years? One of the key drivers is thought to be how likely you are to be killed by something else. Those animals that that are unlikely to be eaten, whether that is because they are very large (elephants), well armoured (tortoises) or poisonous (poison dart frogs), tend to evolve lower rates of ageing. After all, if you are going to live for a long time anyway, you might as well make the most of it. On the other hand, if you live precariously from day to day then there isn’t much point in investing later in life because you probably won’t get that far.
Background: As well as publishing in ecology and evolutionary biology, I am also interested in how that publishing industry works. There is a clear need to disseminate information as widely as possible in order to accelerate the rate of testing of new theories and discovery of new information. However, some publishing models (and some publishing companies) hide scientific research away so that most people do not have access to that work. Self-archiving is a way for researchers to make available certain forms of their research without breaking copyright (which is almost always handed over to the publishers).
Background: There are a number of ways in which animals and plants attempt to defend themselves from predators. Sometimes they look or sound like something that they are not, such as another animal or plant that is venomous, in a process known as “mimicry”. Other times, rather than attempting to deceive a predator after being seen, the animal or plant might try to hide altogether. This second defensive strategy, known as “camouflage”, can take a number of forms. One of the most interesting forms of camouflage is “disruptive colouration” which involves breaking up the edge of an animal to make it harder to detect.