Background: Body size is among the most important characteristics of animals and plants. Larger animals are capable of buffering against their environment (think big polar bear vs tiny chihuahua in the snow!) so that they can survive in a wider range of locations, are capable of eating a wider range of prey, and consume more prey than smaller animals leading to a stronger impact on ecosystems. However, we are still trying to understand the factors that influence body size, both ecologically and evolutionarily.
What I did: A number of previous studies have compared body size in particular animals across different locations to see whether or not there are consistent patterns in that variability. I wanted to collect specimens of a single species (the ebony jewelwing damselfly, Calopteryx maculata) for analysis from across its entire range in North America, but the range is so large (Florida to Ontario, and New York to Nebraska) that I wouldn’t have been able to travel to sufficient sites within the one season that I have available. Instead, I asked a lot of local dragonfly enthusiasts to catch and send me specimens from their local sites. I am extremely grateful to all of them for helping, as this could not have been done without their kind volunteering of time and energy. I ended up with a substantial dataset of animals from 49 sites across the range. I showed that there was a general increase in size further north, but that this was not a simple increase. Instead, there was a U-shaped relationship between latitude and size with larger animals in the south and the north with an intermediate size in the middle. When I looked at the drivers of this trend, it appeared that warm temperatures resulted in higher body sizes in the south. In the north, the animals use shortening days as a signal to accelerate their development and so in the most northern regions animals were developing very quickly despite the cold.
Importance: Large scale (across the whole of an animal’s range) measurements of body size are essential to provide an ecologically relevant test of explanations for changing body size. These findings support previous laboratory work which suggested a twinned role for temperature and photoperiod in driving development in damselflies.
This is part of a series of short lay summaries that describe the technical publications I have authored. This paper, entitled “Time stress and temperature explain continental variation in damselfly body size”, was published in the journal Ecography in 2013. You can find this paper at the publisher’s website or for free at Figshare.
Image credit: Kevin Payravi, http://bit.ly/1q7B2Ph, CC BY-SA 3.0
Background: It is thought that all animals age: they show an increased probability of death at greater ages. However, the lifespans of many animals vary widely. What is it that determines whether or not an animal lives for one year or one hundred years? One of the key drivers is thought to be how likely you are to be killed by something else. Those animals that that are unlikely to be eaten, whether that is because they are very large (elephants), well armoured (tortoises) or poisonous (poison dart frogs), tend to evolve lower rates of ageing. After all, if you are going to live for a long time anyway, you might as well make the most of it. On the other hand, if you live precariously from day to day then there isn’t much point in investing later in life because you probably won’t get that far.
Background: As well as publishing in ecology and evolutionary biology, I am also interested in how that publishing industry works. There is a clear need to disseminate information as widely as possible in order to accelerate the rate of testing of new theories and discovery of new information. However, some publishing models (and some publishing companies) hide scientific research away so that most people do not have access to that work. Self-archiving is a way for researchers to make available certain forms of their research without breaking copyright (which is almost always handed over to the publishers).
Background: There are a number of ways in which animals and plants attempt to defend themselves from predators. Sometimes they look or sound like something that they are not, such as another animal or plant that is venomous, in a process known as “mimicry”. Other times, rather than attempting to deceive a predator after being seen, the animal or plant might try to hide altogether. This second defensive strategy, known as “camouflage”, can take a number of forms. One of the most interesting forms of camouflage is “disruptive colouration” which involves breaking up the edge of an animal to make it harder to detect.
Background: A large number of species are expanding their ranges in response to climate change. This is also true in the damselflies, where the small red-eyed damselfly (Erythromma viridulum) has recently (around 1998) crossed the sea from France to England. Since then, the species has moved hundreds of kilometres north in an unprecedented range expansion (at least as far as European dragonflies and damselflies are concerned). What is less clear is what impact this expansion has had on the species. Are the newly-founded populations the same as those that are resident in France? Can we trace the arrival and expansion of the species through genetic techniques?
Background: Animals and plants can benefit by resembling other species. For example, some plants have spots that look like ants to deter herbivores, cuckoos look like hawks to frighten smaller birds from their nests, and harmless snakes have striped bodies that resemble highly venomous species. However, there are other modes of resemblance: animals and plants can smell, sound or act like another species in addition to (or instead of) having visual resemblance. However, we don’t know much about how different types of mimicry interact in the wild.
Background: Urban ecosystems are becoming increasingly important as areas for biodiversity conservation, as we begin to recognise the importance of preserving natural habitat within heavily modified environments for both wildlife and human well being. Urban ponds are a key part of this network of habitats within cities, and are commonly found in parks, gardens and industrial estates. In fact, there are an estimated 2.5-3.5 million garden ponds in the UK alone, which could have an area the size of Lake Windermere!
Background: Animals and plants have a wide range of colours, and these different colours play different roles in different species. Some species might be signalling to potential predators that they are toxic (like a wasp’s stripes), others might be trying to hide (like a moth’s speckled grey wings), and others might be trying to signal to the opposite sex that they are high quality mates (like a peacock’s train). However, while there are clear functions in principle, the relative importance of different signals might vary depending on the context within which the animal or plant finds itself. For example, male ebony jewelwing damselflies (Calopteryx maculata) have very dark wings and this is thought to allow females of the same species to choose appropriate mates (i.e. to avoid mating with the wrong species). However, the dark pigment can also play a role in temperature regulation. Damselflies cannot generate their own heat and so rely on absorbing heat from the sun, which is helped by the dark pigment. I was interested in how the darkness of the wings varied between locations which experience different temperatures.
Background: One of the fundamental questions in ecology is “what drives changes in the numbers of species in time and space?” We can look around us today and see that there are generally many more species in the tropics than nearer the poles. However, another way in which we can look around ourselves is to delve into the fossil record to look back in time. Dani Fraser is a PhD student at Carleton University working on large-scale patterns in fossil mammal biodiversity. Dani was interested in looking at spatial patterns and how they changed through time, but rather than just calculating the number of animals living in each area at each time, we looked at the rate at which the communities changed as we moved further north. The idea is that when climates are relatively stable and warm there is little variability in climate and so there is gradual change in species as you move north. However, as the climate becomes more polarised (i.e. colder at the pole relative to the tropics) the rate of change in animal communities becomes more pronounced.
Background: When we build ponds in urban areas, they can play a number of important roles: managing floodwater, cooling the urban environment, removing pollution, improving the appearance of built-up areas and providing a habitat for wildlife. However, these different functions often require different forms of management, and so urban managers typically prioritise one or a small number of purposes. We were interested in the biodiversity value of ponds in Bradford in the UK.