Rain, not temperature, seems to have driven fossil mammal diversity in North America

skeletons-268954_1280Background: One of the fundamental questions in ecology is “what drives changes in the numbers of species in time and space?” We can look around us today and see that there are generally many more species in the tropics than nearer the poles. However, another way in which we can look around ourselves is to delve into the fossil record to look back in time. Dani Fraser is a PhD student at Carleton University working on large-scale patterns in fossil mammal biodiversity. Dani was interested in looking at spatial patterns and how they changed through time, but rather than just calculating the number of animals living in each area at each time, we looked at the rate at which the communities changed as we moved further north. The idea is that when climates are relatively stable and warm there is little variability in climate and so there is gradual change in species as you move north. However, as the climate becomes more polarised (i.e. colder at the pole relative to the tropics) the rate of change in animal communities becomes more pronounced.

What we did: We looked at extinct mammals in North America during the Cenozoic (36 million years to the present) and showed that there was greater variability in species between regions when mean annual precipitation was lowest. This is consistent with theory, which suggests that when precipitation is (on average) higher communities are more similar to one another as you move north. We then looked at what might be expected from current mammal species under climate change. We used climate models to predict where these species might occur in the future and saw little evidence of the precipitation relationships that we found in the fossil data.

Importance: Much of the work done on biological responses to climate change has focused on temperature, looking at the number of species in each area, and purely ecological responses (i.e. over short time periods). We demonstrate that precipitation can also play an important role in driving responses to global climate. We also show that it isn’t just the number of species that changes in space but the relationship between communities: there is a greater rate of turnover (a greater dissimilarity) in communities as well. Finally, we show that these relationships seem to be present in the evolutionary record but cannot be predicted from the ecological responses of current mammals, suggesting that the patterns we saw in the fossil record are due (at least in part) to evolutionary processes that are not incorporated into climate models.

This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America”, was published in the journal PLOS ONE in 2014. You can find this paper for free at the publisher’s website.

Image credit: 134213, http://bit.ly/1C0v0Fy, Public Domain.

Advertisements

Damselflies change shape as they move north

Background: It has been proposed that animals and plants of the same species vary in their shape and size depending on where they live. Individuals living close to the cooler, northern range boundary might possess traits that increase their ability to deal with cooler temperatures, for example. However, under climate change the places where animals can live are expected to move as warmer temperatures expand the areas where climate is suitable for different species.

What we did: This study was part of my doctoral research and compared populations of three species between their range core and their range margins.  The three species varied in the degree to which they were expanding their ranges under climate change: Pyrrhosoma nymphula (the large red damselfly) is not expanding in the UK and is found all the way to the northern coast of Scotland, Erythromma najas (the red-eyed damselfly) is found as far north as Cheshire and is not expanding its range margin, and Calopteryx splendens (the banded demoiselle) is found as far north as Northumbria and is expanding rapidly.  The results showed that there was greater variation between the core and range margins in C. splendens, the species which was expanding, less difference in E. najas which is barely expanding, and almost no difference in P. nymphula, which has expanded its range as far as it can.

Importance: In order to respond to climate change, species will likely need to shift their geographical ranges.  This involves being able to colonise new habitats which are currently outside of their range. The detection of variation in morphology such as in this study suggests that there might be traits that would facilitate this colonisation at range margins. If it could be demonstrated that the variation in morphology was evolutionary and not the result of phenotypic plasticity, then this would provide important evidence of adaptation to coping with climate change.


This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “Variation in morphology between core and marginal populations of three British damselflies”, was published in the journal Aquatic Insects in 2009. You can find this paper online at the publisher, or on Figshare.

Image credit: Jean-Daniel Echenard, CC BY-ND 2.0, http://bit.ly/1AHimY5

Climate change interferes with our use of animals to judge water quality

Background: Water quality is measured in a number of different ways: measuring levels of chemicals and pollutants, measuring temperature and other physical parameters, and monitoring the animals and plants that are living in the water. The theory is that the animals and plants living in the water have certain requirements of their habitat (particularly a need for clean water) and so you can use the presence of certain “fussy” animal groups as a proxy for water quality. The problem is that, under climate change, species are moving around as environmental conditions – especially temperature – changes.  This means that changes in the animal and plant communities at a given site might give the appearance of an increase in water quality while actually the arrival of new species is simply the result of climate change.

What we did: I analysed an extensive dataset of British dragonfly and damselfly (known collectively as the “Odonata”) sightings to look for a pattern of geographical movement since 1960.  Dragonflies and damselflies are an important group in biological water quality monitoring, as they are particularly sensitive to pollution.  I found that the patterns of water quality that would be detected using Odonata at a generic site would appear to change over time with the changes in Odonata communities, independent of any changes in water quality.

Importance: Biological communities are used extensively in the monitoring of freshwaters and this research emphasises the need to take distributional shifts that occur as a result of climate change into account when using this method. It is likely that water quality is improving, with better treatment of wastewater and better enforcement of environmental regulation, but accurate monitoring is the key to continuing improvement. Secondly, this paper demonstrates once more the fact that Odonata are responding to climate change.


This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “The impact of climate-induced distributional changes on the validity of biological water quality metrics”, was published in the journal Environmental Monitoring and Assessment in 2010. You can find this paper online at the publisher, or on Figshare.

Image credit: Tambako the Jaguar, CC BY-ND 2.0, http://bit.ly/1v8EGcK

Computer models can predict where rare species might be found

Background:  Species distribution models (SDMs) have been used for a number of different purposes. This approach involves the mapping of species distributions (like the map shown on the right, for the citrine forktail damselfly) onto environmental variables to evaluate the contributions of those variables to determining the species range. This knowledge can then be use to predicted where the species will be in the future under climate change. However, another way in which they can be used is to predict in which areas the species has not been found but could potentially exist.

What we did: My study applied SDMs to this latter problem, predicting where 176 species of North American dragonflies and damselflies occur based on the patchy recording that is currently available.  The models fitted reasonably well, which isn’t surprising given the reliance of dragonflies and damselflies on warm, dry weather for their adult stage.  This highlighted areas for which the models predicted species presence but where those species had not been recorded.  I also demonstrated that the patterns of diversity found in North America were consistent with those found in Europe.

Importance: This kind of study can be used to predict where rare or endangered species may have gone undiscovered as well as directing limited conservation efforts towards areas that are likely to have high diversities of animals or plants but have not been properly explored. We can also look for regions that have been under-surveyed and where resources need to be focused.


This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “Predicting the distributions of under-recorded Odonata using species distribution models”, was published in the journal Insect Conservation and Diversity in 2012. You can find this paper online at the publisher, or on Figshare.

Image credit: L. B. Tettenborn, CC BY-SA 3.0, http://bit.ly/XHiqce

What’s the use of wetlands?

The black bog had him by the feet; the sucking of the ground drew on him, like the thirsty lips of death. […] he tossed his arms to heaven, and they were black to the elbow, and the glare of his eyes was ghastly. […] Scarcely could I turn away, while, joint by joint, he sank from sight.

Lorna Doone, R.D. Blackmore

A view over “Doone Valley”

What do you think of when you think about wetlands: ponds, lakes, streams, rivers? Humankind needs water to drink, irrigate crops, and clean ourselves.  However, our view of water tends to focus on the negatives: drowning, dirt, disease, and decay.  Words like “bogged-down” and “swamped” have entered everyday use. In some ways Carver Doone’s plight represents the fears that we have about wetlands. But I want to make the case that these wetlands are misunderstood heroes of the natural world.
Read More »

Our Skeptical Inquirer article has been published!

20130428_001544

The Skeptical Inquirer piece on climate change denial in universities that I wrote (along with my co-conspirators) has just been published in the May/June 2013 print edition!  It’s a bit strange to be listed alongside people like Ben Radford, Sharon Hill, Joe Nickell, Massimo Pigliucci and Massimo Polidoro, but we’re all delighted that Ken Frazier and the rest of the SI team saw enough value to accept our little piece.  Many thanks to them all for a smooth and efficient editorial process.  I’m afraid that there’s no online version yet (they don’t publish all the print articles online, and those that they do publish online come along a month or two after the print edition) but I’ll post a link if/when it does appear.  All the more reason to go and subscribe to the print version!