How big is a damselfly, and why?

Calopteryx_maculata_mating_(crop)Background: Body size is among the most important characteristics of animals and plants. Larger animals are capable of buffering against their environment (think big polar bear vs tiny chihuahua in the snow!) so that they can survive in a wider range of locations, are capable of eating a wider range of prey, and consume more prey than smaller animals leading to a stronger impact on ecosystems. However, we are still trying to understand the factors that influence body size, both ecologically and evolutionarily.

What I did: A number of previous studies have compared body size in particular animals across different locations to see whether or not there are consistent patterns in that variability. I wanted to collect specimens of a single species (the ebony jewelwing damselfly, Calopteryx maculata) for analysis from across its entire range in North America, but the range is so large (Florida to Ontario, and New York to Nebraska) that I wouldn’t have been able to travel to sufficient sites within the one season that I have available.  Instead, I asked a lot of local dragonfly enthusiasts to catch and send me specimens from their local sites. I am extremely grateful to all of them for helping, as this could not have been done without their kind volunteering of time and energy.  I ended up with a substantial dataset of animals from 49 sites across the range.  I showed that there was a general increase in size further north, but that this was not a simple increase. Instead, there was a U-shaped relationship between latitude and size with larger animals in the south and the north with an intermediate size in the middle. When I looked at the drivers of this trend, it appeared that warm temperatures resulted in higher body sizes in the south. In the north, the animals use shortening days as a signal to accelerate their development and so in the most northern regions animals were developing very quickly despite the cold.

Importance: Large scale (across the whole of an animal’s range) measurements of body size are essential to provide an ecologically relevant test of explanations for changing body size. These findings support previous laboratory work which suggested a twinned role for temperature and photoperiod in driving development in damselflies.

This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “Time stress and temperature explain continental variation in damselfly body size”, was published in the journal Ecography in 2013. You can find this paper at the publisher’s website or for free at Figshare.

Image credit: Kevin Payravi, http://bit.ly/1q7B2Ph, CC BY-SA 3.0

Invasive damselflies get bigger as they move through the UK

Exif_JPEG_PICTUREBackground: A large number of species are expanding their ranges in response to climate change. This is also true in the damselflies, where the small red-eyed damselfly (Erythromma viridulum) has recently (around 1998) crossed the sea from France to England.  Since then, the species has moved hundreds of kilometres north in an unprecedented range expansion (at least as far as European dragonflies and damselflies are concerned). What is less clear is what impact this expansion has had on the species. Are the newly-founded populations the same as those that are resident in France? Can we trace the arrival and expansion of the species through genetic techniques?

What we did: Simon Keat was a PhD student at the University of Liverpool who was lucky enough to be just beginning his PhD when the small red-eyed damselfly first established in the UK.  Simon surveyed a number of populations around Europe and in the UK, collecting animals to measure them and extract DNA. With the body size measurements we showed that animals tend to show a strong relationship with latitude: populations further north were much larger and this held for both the older populations in France, Belgium and Germany as well as the newer populations in the UK. Looking at the genetics, we had expected to see declining genetic diversity further north, as a small number of individuals led the charge up the country. However, instead of a decline in diversity in the UK we saw an almost complete lack of genetic pattern.  This suggests that the animals were moving in such great numbers that there was not the time for any local patterns to develop.

Importance: Range expansions have important consequences for many aspects of human life: agricultural pests shift and threaten crops, diseases and their vectors shift and threaten human health, and endangered species shift and potentially move out of protected areas. We have shown that during this particular range expansion there has been negligible change in genetic structure but that newly-invaded areas contain relatively large damselflies.  Since damselflies are voracious predators, this could have substantial implications of local ecosystems.

This is part of a series of short lay summaries that describe the technical publications I have authored.  This paper, entitled “Bergmann’s rule is maintained during a rapid range expansion in a damselfly”, was published in the journal Global Change Biology in 2014. You can find this paper at the publisher or archived at figshare.

Image credit: Quartl, http://bit.ly/1uX3BOA, CC BY-SA 3.0.